
IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

33 www.ijdcst.com

Dipping Cost of Cloud Bandwidth using Prediction-Based

System

Shaik Sharmila1, V Padmaja2, Sayeed Yasin3

1M.Tech (IT), Nimra College of Engineering and Technology, A.P., India.

2Asst.professor, Dept. of Computer Science & Engineering, Nimra College of Engineering and Technology, A.P., India.

3Head of the Department, Dept. of Computer Science & Engineering, Nimra College of Engineering & Technology, A.P.,

India.

Abstract - In Cloud Computing environment we

designed and present PACK (Predictive ACKs), end

to end traffic redundancy elimination (TRE) system

called for cloud computing customers.. PACK’s main

advantage is its capability of offloading the cloud-

server TRE effort to end clients, thus minimizing the

processing costs induced by the TRE algorithm.

Unlike previous solutions, PACK does not require the

server to continuously maintain clients’ status. Cloud-

based TRE needs to apply a judicious use of cloud

resources so that the bandwidth cost reduction

combined with the additional cost of TRE

computation and storage would be optimized. This

makes PACK very suitable for pervasive computation

environments that combine client mobility and server

migration to maintain cloud elasticity. We present a

fully functional PACK implementation, transparent to

all TCP-based applications and network devices.

Finally, we analyze PACK benefits for cloud users,

using traffic traces from various sources. PACK is

based on a novel TRE technique, which allows the

client to use newly received chunks to identify

previously received chunk chains, which in turn can

be used as reliable predictors to future transmitted

chunks.

Keywords — Caching, cloud computing, network

optimization, traffic redundancy elimination.

I. INTRODUCTION

Cloud customers are increasing day by day in the

world where Cloud customers has to pay only for the

actual use of computing resources, storage, and

bandwidth, according to their changing needs,

utilizing the cloud’s scalable and elastic computational

capabilities. In particular, data transfer costs (i.e.,

bandwidth) is an important issue when trying to

minimize costs [1], [2]. Consequently, cloud

customers, applying a judicious use of the cloud’s

resources, are motivated to use various traffic

reduction techniques, in particular traffic redundancy

elimination (TRE), for reducing bandwidth costs.

Traffic redundancy stems from common end-users’

activities,

such as repeatedly accessing, downloading, uploading

(i.e.,

backup), distributing, and modifying the same or

similar information items (documents, data, Web, and

video). TRE is used to eliminate the transmission of

redundant content and, therefore, to significantly

reduce the network cost. In most common TRE

solutions, both the sender and the receiver examine

and compare signatures of data chunks, parsed

according to the data content, prior to their

transmission. When redundant chunks are detected,

the sender replaces the transmission of each redundant

chunk with its strong signature [3]–[5]. Commercial

TRE solutions are popular at enterprise networks, and

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

34 www.ijdcst.com

involve the deployment of two or more proprietary-

protocol, state synchronized middle-boxes at both the

intranet entry points of data centers and branch

offices, eliminating repetitive traffic between them

While proprietary middle-boxes are popular point

solutions Within enterprises, they are not as attractive

in a cloud environment. Cloud providers cannot

benefit from a technology whose goal is to reduce

customer bandwidth bills, and thus are not likely to

invest in one. The rise of “on-demand” work spaces,

meeting rooms, and work-from-home solutions [3]

detaches the workers from their offices. In such a

dynamic work environment, fixed-point solutions that

require a client-side and a server-side middle-box pair

become ineffective. On the other hand, cloud-side

elasticity motivates work distribution among servers

and migration among data centers. Therefore, it is

commonly agreed that a universal, software-based,

end-to-end TRE is crucial in today’s pervasive

environment [4], [5]. This enables the use of a

standard protocol stack and makes a TRE within end-

to-end secured traffic (e.g., SSL) possible.

Current end-to-end TRE solutions are sender-based. In

the case where the cloud server is the sender, these

solutions require that the server continuously maintain

clients’ status. We show here that cloud elasticity calls

for a new TRE solution. First, cloud load balancing

and power optimizations may lead to a server-side

process and data migration environment, in which

TRE solutions that require full synchronization

between the server and the client are hard to

accomplish or may lose efficiency due to lost

synchronization. Second, the popularity of rich media

that consume high bandwidth motivates content

distribution network (CDN) solutions, in which the

service point for fixed and mobile users may change

dynamically according to the relative service point

locations and loads. Moreover, if an end-to-end

solution is employed, its additional computational and

storage costs at the cloud side should be weighed

against its bandwidth saving gains.

Clearly, a TRE solution that puts most of its

computational effort on the cloud side2may turn to be

less cost-effective than the one that leverages the

combined client-side capabilities. Given an end-to-end

solution, we have found through our experiments that

sender-based end-to-end TRE solutions [4], [3] add a

considerable load to the servers, which may eradicate

the cloud cost saving addressed by the TRE in the first

place. Our experiments further show that current end-

to-end solutions also suffer from the requirement to

maintain end-to-end synchronization that may result in

degraded TRE efficiency. In this paper, we present a

novel receiver-based end-to-end TRE solution that

relies on the power of predictions to eliminate

redundant traffic between the cloud and its end-users.

In this solution, each receiver observes the incoming

stream and tries to match its chunks with a previously

received chunk chain or a chunk chain of a local file.

Using the long-term chunks’ metadata information

kept locally, the receiver sends to the server

predictions that include chunks’ signatures and easy-

to-verify hints of the sender’s future data. The sender

first examines the hint and performs the TRE

operation only on a hint-match. The purpose of this

procedure is to avoid the expensive TRE computation

at the sender side in the absence of traffic redundancy.

When redundancy is detected, the sender then sends to

the receiver only the ACKs to the predictions, instead

of sending the data.

On the receiver side, we propose a new

computationally lightweight chunking (fingerprinting)

scheme termed PACK chunking. PACK chunking is a

new alternative for Rabin fingerprinting traditionally

used by RE applications. Experiments show that our

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

35 www.ijdcst.com

approach can reach data processing speeds over 3

Gb/s, at least 20% faster than Rabin fingerprinting.

Offloading the computational effort from the cloud to

a large group of clients forms a load distribution

action, as each client processes only its TRE part. The

receiver-based TRE solution addresses mobility

problems common to quasi-mobile desktop/ laptops

computational environments. One of them is cloud

elasticity due to which the servers are dynamically

relocated around the federated cloud, thus causing

clients to interact with multiple changing servers.

Another property is IP dynamics, which compel

roaming users to frequently change IP addresses. In

addition to the receiver-based operation, we also

suggest a hybrid approach, which allows a battery-

powered mobile device to shift the TRE computation

overhead back to the cloud by triggering a sender-

based end-to-end TRE similar to [5].To validate the

receiver-based TRE concept, we implemented, tested,

and performed realistic experiments with PACK

within a cloud environment. Our experiments

demonstrate a cloud cost reduction achieved at a

reasonable client effort while gaining additional

bandwidth savings at the client side. The

implementation code, over 25 000 lines of C and Java,

can be obtained from [6]. Our implementation utilizes

the TCP Options field, supporting all TCP-based

applications such as Web, video streaming, P2P, e-

mail, etc. In addition, we evaluate our solution and

compare it to previous end-to-end solutions using

terabytes of real video traffic consumed by 40 000

distinct clients, captured within an ISP, and traffic

brained in a social network service for over a month.

We demonstrate hat our solution achieves 30%

redundancy elimination without significantly affecting

the computational effort of the sender, resulting in a

20% reduction of the overall cost to the cloud

customer

II. RELATED WORK

Several commercial TRE solutions described in [6]

and [7] have combined the sender-based TRE ideas of

[4] with the algorithmic and implementation approach

of [5] along with protocol specific optimizations for

middle-boxes solutions. In particular,[6] describes

how to get away with three-way handshake between

the sender and the receiver if a full state

synchronization is maintained. Several TRE

techniques have been explored in recent years. A

protocol-independent TRE was proposed in [4]. A

large-scale study of real-life traffic redundancy is

presented in [8], and [4]. In the latter, packet-level

TRE techniques are compared [11].Our paper builds

on their finding that “an end to end redundancy

elimination solution, could obtain most of the middle-

box’s bandwidth savings,” motivating the benefit of

low cost software end-to-end solutions.Wanax is a

TRE system for the developing world where storage

and WAN bandwidth are scarce.. In this scheme, the

sender middle-box holds back the TCP stream and

sends data signatures to the receiver whether the data

is found in its local cache. Data chunks that are not

found in the cache are fetched from the by receiver

middle. Naturally, such a scheme incurs three-way-

and shake latency for no cached datacenter [5] is a

sender-based end-to-end TRE for enterprise networks.

It uses a new chunking scheme that is faster than the

commonly used Rabin fingerprint, but is restricted to

chunks as small as 32–64 B. Unlike PACK, Ender

requires the server to maintain a fully and reliably

synchronized cache for each client. To adhere with the

server’s memory requirements, these caches are kept

small, making the system inadequate for medium-to-

large content or long-term redundancy. End RE is

server-specific, hence not suitable for a CDN or cloud

environment.

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

36 www.ijdcst.com

Fig. 1. From stream to chain

To the best of our knowledge, none of the previous

works have addressed the requirements for a cloud-

computing- friendly, end-to-end TRE, which forms

PACK’s focus.

III. PACK ALGORITHM

For the sake of clarity, we first describe the basic

receiver driven operation of the PACK protocol.

Several enhancements and optimizations are

introduced. The stream of data received at the PACK

receiver is parsed to a sequence of variable-size,

content-based signed chunks similar to [3] , [9] and

[5]. The chunks are then compared to the receiver

local storage, termed chunk store. If a matching chunk

is found in the local chunk store, the receiver retrieves

the sequence of subsequent chunks, referred to as a

chain, by traversing the sequence of LRU chunk

pointers that are included in the chunks’ metadata.

Using the constructed chain, the receiver sends a

prediction to the sender for the subsequent data. Part

of each chunk’s prediction, termed a hint, is an easy-

to-compute function with a small-enough false-

positive value, such as the value of the last byte in the

predicted data or a byte-wide XOR checksum of all or

selected bytes. The prediction sent by the receiver

includes the range of the predicted data, the hint, and

the signature of the chunk. The sender identifies the

predicted range in its buffered data and verifies the

hint for that range. If the result matches the received

hint, it continues to perform the more computationally

intensive SHA-1 signature operation. Upon a signature

match, the sender sends a confirmation message to the

receiver, enabling it to copy the matched data from its

local storage.

A. Receiver Chunk Store

PACK uses a new chains scheme, described in Fig. 1,

in which chunks are linked to other chunks according

to their last

received order. The PACK receiver maintains a chunk

store,

which is a large size cache of chunks and their

associated metadata. Chunk’s metadata includes the

chunk’s signature and a (single) pointer to the

successive chunk in the last received stream

containing this chunk. Caching and indexing

techniques are employed to efficiently maintain and

retrieve the stored chunks, their signatures, and the

chains formed by traversing the chunk pointers. When

the new data are received and parsed to chunks, the

receiver computes each chunk’s signature using SHA-

1. At this point, the chunk and its signature are added

to the chunk store. In addition, the metadata of the

previously received chunk in the same stream is

updated to point to the current chunk. The

unsynchronized nature of PACK allows the receiver to

map each existing file in the local file system to a

chain of chunks, saving in the chunk store only the

metadata associated with the chunks.3 Using the latter

observation, the receiver can also share chunks with

peer clients within the same local network utilizing a

simple map of network drives. The utilization of a

small chunk size presents better redundancy

elimination when data modifications are fine-grained,

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

37 www.ijdcst.com

such as sporadic changes in an HTML page. On the

other hand, the use of smaller chunks increases the

storage index size, memory usage, and magnetic disk

seeks. It also increases the transmission overhead of

the virtual data exchanged between the client and the

server. Unlike IP-level TRE solutions that are limited

by the IP packet size (B) , PACK operates on TCP

streams and can therefore handle large chunks and

entire chains. Although our design permits each

PACK client to use any chunk size, we recommend an

average chunk size of 8 kB B.

 Receiver Algorithm

Upon the arrival of new data, the receiver computes

the respective signature for each chunk and looks for a

match in its local chunk store. If the chunk’s signature

is found, the receiver determines whether it is a part of

a formerly received chain, using the chunks’ metadata.

If affirmative, the receiver sends a prediction to the

sender for several next expected chain chunks. The

prediction carries a starting point in the byte stream

(i.e., offset) and the identity of several subsequent

chunks (PRED command). Upon a successful

prediction, the sender responds with a PRED-ACK

confirmation message. Once the PRED-ACK message

is received and processed, the receiver copies the

corresponding data from the chunk store to its TCP

input buffers, placing it according to the

corresponding sequence numbers. At this point, the

receiver sends a normal TCP ACK with the next

expected TCP sequence number. In case the prediction

is false, or one or more predicted chunks are already

sent, the sender continues with normal operation, e.g.,

sending the raw data, without sending a PRED-ACK

message.

Proc. 1: Receiver Segment Processing

1. if segment carries payload data then

2. calculate chunk

3. if reached chunk boundary then

4. activate predAttempt()

5. end if

6. else if PRED-ACK segment then

7. processPredAck()

8. activate predAttempt()

9. end if

Proc. 2: predAttempt()

1. if received chunk matches one in chunk store then

2. if foundChain(chunk) then

3. prepare PREDs

4. send single TCP ACK with PREDs according to

Options free space

5. exit

6. end if

7. else

8. store chunk

9. link chunk to current chain

10. end if

11. send TCP ACK only

Proc. 3: processPredAck()

1. for all offset PRED-ACK do

2. read data from chunk store

3. put data in TCP input buffer

4. end for

IV. IMPLEMENTATION

In this section, we present PACK implementation, its

performance analysis, and the projected server costs

derived from the implementation experiments. Our

implementation contains over 25 000 lines of C and

Java code. It runs on Linux with Net filter Queue [11].

Fig. 2 shows the PACK implementation architecture.

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

38 www.ijdcst.com

Fig. 2: Overview of the PACK implementation

At the server side, we use an Intel Core 2 Duo 3 GHz,

2 GB of RAM, and a WD1600AAJS SATA drive

desktop. The clients laptop machines are based on an

Intel Core 2 Duo 2.8 GHz, 3.5 GB of RAM , and a

WD2500BJKT SATA drive. Our implementation

enables the transparent use of the TRE at both the

server and the client. PACK receiver–sender protocol

is embedded in the TCP Options field for low

overhead and compatibility with legacy systems along

the path. We keep the genuine operating systems’ TCP

stacks intact, allowing a seamless integration with all

applications and protocols above TCP. Chunking and

indexing are performed only at the client’s side,

enabling the clients to decide independently on their

preferred chunk size. In our implementation, the client

uses an average chunk size of 8 kB. We found this

size to achieve high TRE hit-ratio in the evaluated

datasets, while adding only negligible overheads of

0.1% in metadata storage and 0.15% in predictions

bandwidth. For the experiments held in this section,

we generated a workload consisting of datasets: IMAP

e-mails, HTTP videos, and files downloaded over

FTP. The workload was then loaded to the server and

consumed by the clients. We sampled the machines’

status every second to measure real and virtual traffic

volumes and CPU utilization. A. Server Operational

Cost We measured the server performance and cost as

a function of the data redundancy level in order to

capture the effect of the TRE mechanisms in real

environment. To isolate the TRE operational cost, we

measured the server’s traffic volume and CPU

utilization at maximal throughput without operating a

TRE. We then used these numbers as a reference cost,

based on present Amazon EC2 [10] pricing. The

server operational cost is composed of both the

network traffic volume and the CPU utilization, as

derived from the EC2 pricing. We constructed a

system consisting of one server and seven clients over

a 1-Gb/s network. The server was configured to

provide a maximal throughput of 50 Mb/s per client.

We then measured three different scenarios: a baseline

no-TRE operation, PACK, and a sender-based TRE

similar to End RE’s Chunk-Match [12], referred to as

End RE-like. For the End RE-like case, we accounted

for the SHA-1 calculated over the entire outgoing

traffic, but did not account for the chunking effort. In

the case of End RE-like, we made the assumption of

unlimited buffers at both the server and client sides to

enable the same long-term redundancy level and TRE

ratio of PACK.

Presents the overall processing and networking cost

for traffic redundancy, relative to no-TRE operation.

As the redundancy grows, the PACK server cost

decreases due to the bandwidth saved by unsent data.

However, the End RE-like server does not gain a

significant cost reduction since the SHA-1 operations

are performed over non redundant data as well. Note

that at above 25% redundancy, which is common to

all reviewed datasets, the PACK operational cost is at

least 20% lower than that of End RE-like.

B. PACK Impact on the Client CPU

To evaluate the CPU effort imposed by PACK on a

client, we

measured a random client under a scenario similar to

the one used for measuring the server’s cost, only this

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

39 www.ijdcst.com

time the cloud server streamed videos at a rate of 9

Mb/s to each client. Such

a speed throttling is very common in real-time video

servers that aim to provide all clients with stable

bandwidth for mooth view.

Table IV summarizes the results. The average PACK-

related

CPU consumption of a client is less than 4% for 9-

Mb/s video

with 36.4% redundancy. Fig. 12(a) presents the client

CPU utilization as a function of the real incoming

traffic bandwidth. Since the client chunks the arriving

data, the CPU utilization grows as more real traffic

enters the client’s machine. Fig. 12(b) shows the client

CPU utilization as a function of the virtual traffic

bandwidth. Virtual traffic arrives in the form of

prediction approvals from the sender and is limited to

a rate of 9 Mb/s by the server’s throttling. The

approvals save the client the need to chunk data or

sign the chunks and enable him to send more

predictions based on the same chain that was just used

successfully. Hence, the more redundancy is found,

the less CPU utilization incurred by PACK.

Fig 3: PACK versus End RE-like cloud server

operational cost as a function of redundancy ratio.

V. CONCLUSION

In this paper, we have presented PACK , a receiver-

based, Cloud-friendly, end-to-end TRE that is based

on novel speculative principles that reduce latency and

cloud operational cost. PACK does not require the

server to continuously maintain clients’ status, thus

enabling cloud elasticity and user mobility while

preserving long-term redundancy. Moreover, PACK is

capable of eliminating redundancy based on content

arriving to the client from multiple servers without

applying a three-way handshake. Our evaluation using

a wide collection of content types shows that PACK

meets the expected design goals and has clear

advantages over sender-based TRE, especially when

the cloud computation cost and buffering requirements

are important. Moreover, PACK imposes additional

effort on the sender only when redundancy is

exploited, thus reducing the cloud overall cost. Two

interesting future extensions can provide additional

benefits to the PACK concept. First, our

implementation maintains chains by keeping for any

chunk only the last observed subsequent chunk in an

LRU fashion. An interesting extension to this work is

the statistical study of chains of chunks that would

enable multiple possibilities in both the chunk order

and the corresponding predictions. The system may

also allow making more than one prediction at a time,

and it is enough that one of them will be correct for

successful traffic elimination. A second promising

direction is the mode of operation optimization of the

hybrid sender–receiver approach based on shared

decisions derived from receiver’s power or server’s

cost changes.

References

[1] E. Zohar, I. Cidon, and O. Mokryn, “The power of

prediction: Cloud bandwidth and cost reduction,” in

Proc. SIGCOMM, 2011, pp. 86–97.

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-06
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

40 www.ijdcst.com

[2] M. Armbrust, A. Fox, R. Griffith, A. D.

Joseph,R.Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia, “A view of

cloud computing,” Commun. ACM, vol. 53, no. 4, pp.

50–58, 2010.

[3] U. Manber, “Finding similar files in a large file

system,” in Proc. USENIX Winter Tech. Conf., 1994,

pp. 1–10.

[4] N. T. Spring and D. Wetherall, “A protocol-

independent technique for eliminating redundant

network traffic,” in Proc. SIGCOMM, 2000, vol. 30,

pp. 87–95.

[5] A. Muthitacharoen, B. Chen, and D. Mazières, “A

low-bandwidth network file system,” in Proc. SOSP,

2001, pp. 174–187.

[6] E. Lev-Ran, I. Cidon, and I. Z. Ben-Shaul,

“Method and apparatus for reducing network traffic

over low bandwidth links,” US Patent 7636767, Nov.

2009.

[7] S.Mccanne andM. Demmer, “Content-based

segmentation scheme for data compression in storage

and transmission including hierarchical segment

representation,” US Patent 6828925, Dec. 2004.

[8] R. Williams, “Method for partitioning a block of

data into subblocks and for storing and

communicating such subblocks,” US Patent 5990810,

Nov. 1999.

[9] A. Flint, “The next workplace revolution,” Nov.

2012 [Online]. Available:

http://m.theatlanticcities.com/jobs-and

economy/2012/11/

nextworkplace-revolution/3904/

[10] B. Aggarwal, A. Akella, A. Anand, A.

Balachandran, P. Chitnis, C. Muthukrishnan, R.

Ramjee, and G. Varghese, “EndRE: An end-system

redundancy elimination service for enterprises,” in

Proc. NSDI, 2010, pp. 28–28.

 [11] A. Anand, A. Gupta, A. Akella, S. Seshan, and

S. Shenker, “Packet caches on routers: The

implications of universal redundant traffic

elimination,” in Proc. SIGCOMM, 2008, pp. 219–230.

[12] A. Anand, V. Sekar, and A. Akella, “SmartRE:

An architecture for coordinated network-wide

redundancy elimination,” in Proc. SIGCOMM, 2009,

vol. 39, pp. 87–98.

http://m.theatlanticcities.com/jobs-and

