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Abstract - In Cloud Computing environment we 

designed and present PACK (Predictive ACKs), end 

to end traffic redundancy elimination (TRE) system 

called for cloud computing customers.. PACK’s main 

advantage is its capability of offloading the cloud-

server TRE effort to end clients, thus minimizing the 

processing costs induced by the TRE algorithm. 

Unlike previous solutions, PACK does not require the 

server to continuously maintain clients’ status. Cloud-

based TRE needs to apply a judicious use of cloud 

resources so that the bandwidth cost reduction 

combined with the additional cost of TRE 

computation and storage would be optimized. This 

makes PACK very suitable for pervasive computation 

environments that combine client mobility and server 

migration to maintain cloud elasticity. We present a 

fully functional PACK implementation, transparent to 

all TCP-based applications and network devices. 

Finally, we analyze PACK benefits for cloud users, 

using traffic traces from various sources. PACK is 

based on a novel TRE technique, which allows the 

client to use newly received chunks to identify 

previously received chunk chains, which in turn can 

be used as reliable predictors to future transmitted 

chunks. 

Keywords — Caching, cloud computing, network 

optimization, traffic redundancy elimination. 

 

 

 

 

I. INTRODUCTION 

Cloud customers are increasing day by day in the 

world where Cloud customers has to pay only for the 

actual use of computing resources, storage, and 

bandwidth, according to their changing needs, 

utilizing the cloud’s scalable and elastic computational 

capabilities. In particular, data transfer costs (i.e., 

bandwidth) is an important issue when trying to 

minimize costs [1], [2]. Consequently, cloud 

customers, applying a judicious use of the cloud’s 

resources, are motivated to use various traffic 

reduction techniques, in particular traffic redundancy 

elimination (TRE), for reducing bandwidth costs. 

 

Traffic redundancy stems from common end-users’ 

activities, 

such as repeatedly accessing, downloading, uploading 

(i.e., 

backup), distributing, and modifying the same or 

similar information items (documents, data, Web, and 

video). TRE is used to eliminate the transmission of 

redundant content and, therefore, to significantly 

reduce the network cost. In most common TRE 

solutions, both the sender and the receiver examine 

and compare signatures of data chunks, parsed 

according to the data content, prior to their 

transmission. When redundant chunks are detected, 

the sender replaces the transmission of each redundant 

chunk with its strong signature [3]–[5]. Commercial 

TRE solutions are popular at enterprise networks, and 
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involve the deployment of two or more proprietary-

protocol, state synchronized middle-boxes at both the 

intranet entry points of data centers and branch 

offices, eliminating repetitive traffic between them 

While proprietary middle-boxes are popular point 

solutions Within enterprises, they are not as attractive 

in a cloud environment. Cloud providers cannot 

benefit from a technology whose goal is to reduce 

customer bandwidth bills, and thus are not likely to 

invest in one. The rise of “on-demand” work spaces, 

meeting rooms, and work-from-home solutions [3] 

detaches the workers from their offices. In such a 

dynamic work environment, fixed-point solutions that 

require a client-side and a server-side middle-box pair 

become ineffective. On the other hand, cloud-side 

elasticity motivates work distribution among servers 

and migration among data centers. Therefore, it is 

commonly agreed that a universal, software-based, 

end-to-end TRE is crucial in today’s pervasive 

environment [4], [5]. This enables the use of a 

standard protocol stack and makes a TRE within end-

to-end secured traffic (e.g., SSL) possible. 

 

Current end-to-end TRE solutions are sender-based. In 

the case where the cloud server is the sender, these 

solutions require that the server continuously maintain 

clients’ status. We show here that cloud elasticity calls 

for a new TRE solution. First, cloud load balancing 

and power optimizations may lead to a server-side 

process and data migration environment, in which 

TRE solutions that require full synchronization 

between the server and the client are hard to 

accomplish or may lose efficiency due to lost 

synchronization. Second, the popularity of rich media 

that consume high bandwidth motivates content 

distribution network (CDN) solutions, in which the 

service point for fixed and mobile users may change 

dynamically according to the relative service point 

locations and loads. Moreover, if an end-to-end 

solution is employed, its additional computational  and 

storage costs at the cloud side should be weighed 

against its bandwidth saving gains. 

 

Clearly, a TRE solution that puts most of its 

computational effort on the cloud side2may turn to be 

less cost-effective than the one that leverages the 

combined client-side capabilities. Given an end-to-end 

solution, we have found through our experiments that 

sender-based end-to-end TRE solutions [4], [3] add a 

considerable load to the servers, which may eradicate 

the cloud cost saving addressed by the TRE in the first 

place. Our experiments further show that current end-

to-end solutions also suffer from the requirement to 

maintain end-to-end synchronization that may result in 

degraded TRE efficiency. In this paper, we present a 

novel receiver-based end-to-end TRE solution that 

relies on the power of predictions to eliminate 

redundant traffic between the cloud and its end-users. 

In this solution, each receiver observes the incoming 

stream and tries to match its chunks with a previously 

received chunk chain or a chunk chain of a local file. 

Using the long-term chunks’ metadata information 

kept locally, the receiver sends to the server 

predictions that include chunks’ signatures and easy-

to-verify hints of the sender’s future data. The sender 

first examines the hint and performs the TRE 

operation only on a hint-match. The purpose of this 

procedure is to avoid the expensive TRE computation 

at the sender side in the absence of traffic redundancy. 

When redundancy is detected, the sender then sends to 

the receiver only the ACKs to the predictions, instead 

of sending the data. 

 

On the receiver side, we propose a new 

computationally lightweight chunking (fingerprinting) 

scheme termed PACK chunking. PACK chunking is a 

new alternative for Rabin fingerprinting traditionally 

used by RE applications. Experiments show that our 
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approach can reach data processing speeds over 3 

Gb/s, at least 20% faster than Rabin fingerprinting. 

Offloading the computational effort from the cloud to 

a large group of clients forms a load distribution 

action, as each client processes only its TRE part. The 

receiver-based TRE solution addresses mobility 

problems common to quasi-mobile desktop/ laptops 

computational environments. One of them is cloud 

elasticity due to which the servers are dynamically 

relocated around the federated cloud, thus causing 

clients to interact with multiple changing servers. 

Another property is IP dynamics, which compel 

roaming users to frequently change IP addresses. In 

addition to the receiver-based operation, we also 

suggest a hybrid approach, which allows a battery-

powered mobile device to shift the TRE computation 

overhead back to the cloud by triggering a sender-

based end-to-end TRE similar to [5].To validate the 

receiver-based TRE concept, we implemented, tested, 

and performed realistic experiments with PACK 

within a cloud environment. Our experiments 

demonstrate a cloud cost reduction achieved at a 

reasonable client effort while gaining additional 

bandwidth savings at the client side. The 

implementation code, over 25 000 lines of C and Java, 

can be obtained from [6]. Our implementation utilizes 

the TCP Options field, supporting all TCP-based 

applications such as Web, video streaming, P2P, e-

mail, etc. In addition, we evaluate our solution and 

compare it to previous end-to-end solutions using 

terabytes of real video traffic consumed by 40 000 

distinct clients, captured within an ISP, and traffic 

brained in a social network service for over a month. 

We demonstrate hat our solution achieves 30% 

redundancy elimination without significantly affecting 

the computational effort of the sender, resulting in a 

20% reduction of the overall cost to the cloud 

customer 

II. RELATED WORK 

Several commercial TRE solutions described in [6] 

and [7] have combined the sender-based TRE ideas of 

[4] with the algorithmic and implementation approach 

of [5] along with protocol specific optimizations for 

middle-boxes solutions. In particular,[6] describes 

how to get away with three-way handshake between 

the sender and the receiver if a full state 

synchronization is maintained. Several TRE 

techniques have been explored in recent years. A 

protocol-independent TRE was proposed in [4]. A 

large-scale study of real-life traffic redundancy is 

presented in [8], and [4]. In the latter, packet-level 

TRE techniques are compared [11].Our paper builds 

on their finding that “an end to end redundancy 

elimination solution, could obtain most of the middle-

box’s bandwidth savings,” motivating the benefit of 

low cost software end-to-end solutions.Wanax is a 

TRE system for the developing world where storage 

and WAN bandwidth are scarce.. In this scheme, the 

sender middle-box holds back the TCP stream and 

sends data signatures to the receiver whether the data 

is found in its local cache. Data chunks that are not 

found in the cache are fetched from the by receiver 

middle. Naturally, such a scheme incurs three-way-

and shake latency for no cached datacenter [5] is a 

sender-based end-to-end TRE for enterprise networks. 

It uses a new chunking scheme that is faster than the 

commonly used Rabin fingerprint, but is restricted to 

chunks as small as 32–64 B. Unlike PACK, Ender 

requires the server to maintain a fully and reliably 

synchronized cache for each client. To adhere with the 

server’s memory requirements, these caches are kept 

small, making the system inadequate for medium-to-

large content or long-term redundancy. End RE is 

server-specific, hence not suitable for a CDN or cloud 

environment. 
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Fig. 1.  From stream to chain 

To the best of our knowledge, none of the previous 

works have addressed the requirements for a cloud-

computing- friendly, end-to-end TRE, which forms 

PACK’s focus. 

 

III. PACK ALGORITHM 

 

For the sake of clarity, we first describe the basic 

receiver driven operation of the PACK protocol. 

Several enhancements and optimizations are 

introduced. The stream of data received at the PACK 

receiver is parsed to a sequence of variable-size, 

content-based signed chunks similar to [3] , [9] and 

[5]. The chunks are then compared to the receiver 

local storage, termed chunk store. If a matching chunk 

is found in the local chunk store, the receiver retrieves 

the sequence of subsequent chunks, referred to as a 

chain, by traversing the sequence of LRU chunk 

pointers that are included in the chunks’ metadata. 

Using the constructed chain, the receiver sends a 

prediction to the sender for the subsequent data. Part 

of each chunk’s prediction, termed a hint, is an easy-

to-compute function with a small-enough false-

positive value, such as the value of the last byte in the 

predicted data or a byte-wide XOR checksum of all or 

selected bytes. The prediction sent by the receiver 

includes the range of the predicted data, the hint, and 

the signature of the chunk. The sender identifies the 

predicted range in its buffered data and verifies the 

hint for that range. If the result matches the received 

hint, it continues to perform the more computationally 

intensive SHA-1 signature operation. Upon a signature 

match, the sender sends a confirmation message to the 

receiver, enabling it to copy the matched data from its 

local storage. 

 

A. Receiver Chunk Store 

 

PACK uses a new chains scheme, described in Fig. 1, 

in which chunks are linked to other chunks according 

to their last 

received order. The PACK receiver maintains a chunk 

store, 

which is a large size cache of chunks and their 

associated metadata. Chunk’s metadata includes the 

chunk’s signature and a (single) pointer to the 

successive chunk in the last received stream 

containing this chunk. Caching and indexing 

techniques are employed to efficiently maintain and 

retrieve the stored chunks, their signatures, and the 

chains formed by traversing the chunk pointers. When 

the new data are received and parsed to chunks, the 

receiver computes each chunk’s signature using SHA-

1. At this point, the chunk and its signature are added 

to the chunk store. In addition, the metadata of the 

previously received chunk in the same stream is 

updated to point to the current chunk. The 

unsynchronized nature of PACK allows the receiver to 

map each existing file in the local file system to a 

chain of chunks, saving in the chunk store only the 

metadata associated with the chunks.3 Using the latter 

observation, the receiver can also share chunks with 

peer clients within the same local network utilizing a 

simple map of network drives. The utilization of a 

small chunk size presents better redundancy 

elimination when data modifications are fine-grained, 
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such as sporadic changes in an HTML page. On the 

other hand, the use of smaller chunks increases the 

storage index size, memory usage, and magnetic disk 

seeks. It also increases the transmission overhead of 

the virtual data exchanged between the client and the 

server. Unlike IP-level TRE solutions that are limited 

by the IP packet size ( B) , PACK operates on TCP 

streams and can therefore handle large chunks and 

entire chains. Although our design permits each 

PACK client to use any chunk size, we recommend an 

average chunk size of 8 kB B. 

 

 Receiver Algorithm 

 

Upon the arrival of new data, the receiver computes 

the respective signature for each chunk and looks for a 

match in its local chunk store. If the chunk’s signature 

is found, the receiver determines whether it is a part of 

a formerly received chain, using the chunks’ metadata. 

If affirmative, the receiver sends a prediction to the 

sender for several next expected chain chunks. The 

prediction carries a starting point in the byte stream 

(i.e., offset) and the identity of several subsequent 

chunks (PRED command). Upon a successful 

prediction, the sender responds with a PRED-ACK 

confirmation message. Once the PRED-ACK message 

is received and processed, the receiver copies the 

corresponding data from the chunk store to its TCP 

input buffers, placing it according to the 

corresponding sequence numbers. At this point, the 

receiver sends a normal TCP ACK with the next 

expected TCP sequence number. In case the prediction 

is false, or one or more predicted chunks are already 

sent, the sender continues with normal operation, e.g., 

sending the raw data, without sending a PRED-ACK 

message. 

 

Proc. 1: Receiver Segment Processing 

 

1. if segment carries payload data then 

2. calculate chunk 

3. if reached chunk boundary then 

4. activate predAttempt() 

5. end if 

6. else if PRED-ACK segment then 

7. processPredAck() 

8. activate predAttempt() 

9. end if 

 

Proc. 2: predAttempt() 

1. if received chunk matches one in chunk store then 

2. if foundChain(chunk) then 

3. prepare PREDs 

4. send single TCP ACK with PREDs according to 

Options free space 

5. exit 

6. end if 

7. else 

8. store chunk 

9. link chunk to current chain 

10. end if 

11. send TCP ACK only 

Proc. 3: processPredAck() 

1. for all offset PRED-ACK do 

2. read data from chunk store 

3. put data in TCP input buffer 

4. end for 

 

IV. IMPLEMENTATION 

 

In this section, we present PACK implementation, its 

performance analysis, and the projected server costs 

derived from the implementation experiments. Our 

implementation contains over 25 000 lines of C and 

Java code. It runs on Linux with Net filter Queue [11]. 

Fig. 2 shows the PACK implementation architecture.  
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Fig. 2: Overview of the PACK implementation 

 

 

At the server side, we use an Intel Core 2 Duo 3 GHz, 

2 GB of RAM, and a WD1600AAJS SATA drive 

desktop. The clients laptop machines are based on an 

Intel Core 2 Duo 2.8 GHz, 3.5 GB of RAM , and a 

WD2500BJKT SATA drive. Our implementation 

enables the transparent use of the TRE at both the 

server and the client. PACK receiver–sender protocol 

is embedded in the TCP Options field for low 

overhead and compatibility with legacy systems along 

the path. We keep the genuine operating systems’ TCP 

stacks intact, allowing a seamless integration with all 

applications and protocols above TCP. Chunking and 

indexing are performed only at the client’s side, 

enabling the clients to decide independently on their 

preferred chunk size. In our implementation, the client 

uses an average chunk size of 8 kB. We found this 

size to achieve high TRE hit-ratio in the evaluated 

datasets, while adding only negligible overheads of 

0.1% in metadata storage and 0.15% in predictions 

bandwidth. For the experiments held in this section, 

we generated a workload consisting of datasets: IMAP 

e-mails, HTTP videos, and files downloaded over 

FTP. The workload was then loaded to the server and 

consumed by the clients. We sampled the machines’ 

status every second to measure real and virtual traffic 

volumes and CPU utilization. A. Server Operational 

Cost We measured the server performance and cost as 

a function of the data redundancy level in order to 

capture the effect of the TRE mechanisms in real 

environment. To isolate the TRE operational cost, we 

measured the server’s traffic volume and CPU 

utilization at maximal throughput without operating a 

TRE. We then used these numbers as a reference cost, 

based on present Amazon EC2 [10] pricing. The 

server operational cost is composed of both the 

network traffic volume and the CPU utilization, as 

derived from the EC2 pricing. We constructed a 

system consisting of one server and seven clients over 

a 1-Gb/s network. The server was configured to 

provide a maximal throughput of 50 Mb/s per client. 

We then measured three different scenarios: a baseline 

no-TRE operation, PACK, and a sender-based TRE 

similar to End RE’s Chunk-Match [12], referred to as 

End RE-like. For the End RE-like case, we accounted 

for the SHA-1 calculated over the entire outgoing 

traffic, but did not account for the chunking effort. In 

the case of End RE-like, we made the assumption of 

unlimited buffers at both the server and client sides to 

enable the same long-term redundancy level and TRE 

ratio of PACK. 

 

Presents the overall processing and networking cost 

for traffic redundancy, relative to no-TRE operation. 

As the redundancy grows, the PACK server cost 

decreases due to the bandwidth saved by unsent data. 

However, the End RE-like server does not gain a 

significant cost reduction since the SHA-1 operations 

are performed over non redundant data as well. Note 

that at above 25% redundancy, which is common to 

all reviewed datasets, the PACK operational cost is at 

least 20% lower than that of End RE-like. 

 

B. PACK Impact on the Client CPU 

 

To evaluate the CPU effort imposed by PACK on a 

client, we 

measured a random client under a scenario similar to 

the one used for measuring the server’s cost, only this 
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time the cloud server streamed videos at a rate of 9 

Mb/s to each client. Such 

a speed throttling is very common in real-time video 

servers that aim to provide all clients with stable 

bandwidth for  mooth view. 

Table IV summarizes the results. The average PACK-

related 

CPU consumption of a client is less than 4% for 9-

Mb/s video 

with 36.4% redundancy. Fig. 12(a) presents the client 

CPU utilization as a function of the real incoming 

traffic bandwidth. Since the client chunks the arriving 

data, the CPU utilization grows as more real traffic 

enters the client’s machine. Fig. 12(b) shows the client 

CPU utilization as a function of the virtual traffic 

bandwidth. Virtual traffic arrives in the form of 

prediction approvals from the sender and is limited to 

a rate of 9 Mb/s by the server’s throttling. The 

approvals save the client the need to chunk data or 

sign the chunks and enable him to send more 

predictions based on the same chain that was just used 

successfully. Hence, the more redundancy is found, 

the less CPU utilization incurred by PACK. 

 

 

 

 

 

Fig 3:  PACK versus End RE-like cloud server 

operational cost as a function of redundancy ratio. 

 

V. CONCLUSION 

 

In this paper, we have presented PACK , a receiver-

based, Cloud-friendly, end-to-end TRE that is based 

on novel speculative principles that reduce latency and 

cloud operational cost. PACK does not require the 

server to continuously maintain clients’ status, thus 

enabling cloud elasticity and user mobility while 

preserving long-term redundancy. Moreover, PACK is 

capable of eliminating redundancy based on content 

arriving to the client from multiple servers without 

applying a three-way handshake. Our evaluation using 

a wide collection of content types shows that PACK 

meets the expected design goals and has clear 

advantages over sender-based TRE, especially when 

the cloud computation cost and buffering requirements 

are important. Moreover, PACK imposes additional 

effort on the sender only when redundancy is 

exploited, thus reducing the cloud overall cost. Two 

interesting future extensions can provide additional 

benefits to the PACK concept. First, our 

implementation maintains chains by keeping for any 

chunk only the last observed subsequent chunk in an 

LRU fashion. An interesting extension to this work is 

the statistical study of chains of chunks that would 

enable multiple possibilities in both the chunk order 

and the corresponding predictions. The system may 

also allow making more than one prediction at a time, 

and it is enough that one of them will be correct for 

successful traffic elimination. A second promising 

direction is the mode of operation optimization of the 

hybrid sender–receiver approach based on shared 

decisions derived from receiver’s power or server’s 

cost changes. 
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